# select training, validation set

train_rand_idxs = np.random.choice(50000, 700)

val_rand_idxs = np.random.choice(10000, 300)

data_train = data_train[train_rand_idxs]

label_train = label_train[train_rand_idxs]

data_val = data_val[val_rand_idxs]

label_val = label_val[val_rand_idxs]


# convert to 'one-hot' encoding for label data

label_train = np_utils.to_categorical(label_train)

label_val = np_utils.to_categorical(label_val)

label_test = np_utils.to_categorical(label_test)


# Build model

model = Sequential()

model.add(Dense(units=2, input_dim=28*28, activation='relu'))

model.add(Dense(units=10, activation='softmax'))

# units = dimensionality of the output space


model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

# see https://keras.io/losses/, https://keras.io/optimizers/


# conduct learn

hist = model.fit(data_train, label_train, epochs=1000, batch_size=10, validation_data=(data_val, label_val))






+ Recent posts