from keras.utils import np_utils

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense, Activation


import numpy as np


np.random.seed(3)


# generating data set


# load training set and test set

(data_train, label_train), (data_test, label_test) = mnist.load_data()

# data_train, data_test are RGB image with shape (num_samples, 3, width, height) 


# split training set and test set

data_val = data_train[50000:]

label_val = label_train[50000:]

data_train = data_train[:50000]

label_train = label_train[:50000]


# dataset pre processing

data_train = data_train.reshape(50000,784).astype('float32')/255.0

data_val = data_val.reshape(10000, 784).astype('float32')/255.0

data_test = data_test.reshape(10000, 784).astype('float32')/255.0




#

#

#

# missing part

#

#





# show the learning process

%matplotlib inline

import matplotlib.pyplot as plt


fig, loss_ax = plt.subplots()


acc_ax = loss_ax.twinx()


loss_ax.plot(hist.history['loss'], 'y', label='train loss')

loss_ax.plot(hist.history['val_loss'], 'r', label='val loss')


acc_ax.plot(hist.history['acc'], 'b', label='train acc')

acc_ax.plot(hist.history['val_acc'], 'g', label='val acc')


loss_ax.set_xlabel('epoch')

loss_ax.set_ylabel('loss')

acc_ax.set_ylabel('accuracy')



loss_ax.legend(loc='upper left')

acc_ax.legend(loc='lower left')


plt.show()

+ Recent posts