from pandas import DataFrame
from pandas import Series
from pandas import concat
from pandas import read_csv
from pandas import datetime
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from math import sqrt
from matplotlib import pyplot
import numpy

# date-time parsing function for loading the dataset
def parser(x):
 return datetime.strptime('190'+x, '%Y-%m')

# frame a sequence as a supervised learning problem
def timeseries_to_supervised(data, lag=1):
 df = DataFrame(data)
 columns = [df.shift(i) for i in range(1, lag+1)]
 columns.append(df)
 df = concat(columns, axis=1)
 df.fillna(0, inplace=True)
 return df

# create a differenced series
def difference(dataset, interval=1):
 diff = list()
 for i in range(interval, len(dataset)):
  value = dataset[i] - dataset[i - interval]
  diff.append(value)
 return Series(diff)

# invert differenced value
def inverse_difference(history, yhat, interval=1):
 return yhat + history[-interval]

# scale train and test data to [-1, 1]
def scale(train, test):
 # fit scaler
 scaler = MinMaxScaler(feature_range=(-1, 1))
 scaler = scaler.fit(train)
 # transform train
 train = train.reshape(train.shape[0], train.shape[1])
 train_scaled = scaler.transform(train)
 # transform test
 test = test.reshape(test.shape[0], test.shape[1])
 test_scaled = scaler.transform(test)
 return scaler, train_scaled, test_scaled

# inverse scaling for a forecasted value
def invert_scale(scaler, X, value):
 new_row = [x for x in X] + [value]
 array = numpy.array(new_row)
 array = array.reshape(1, len(array))
 inverted = scaler.inverse_transform(array)
 return inverted[0, -1]

# fit an LSTM network to training data
def fit_lstm(train, batch_size, nb_epoch, neurons):
 X, y = train[:, 0:-1], train[:, -1]
 X = X.reshape(X.shape[0], 1, X.shape[1])
 model = Sequential()
 model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True))
 model.add(Dense(1))
 model.compile(loss='mean_squared_error', optimizer='adam')
 for i in range(nb_epoch):
  model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False)
  model.reset_states()
 return model

# make a one-step forecast
def forecast_lstm(model, batch_size, X):
 X = X.reshape(1, 1, len(X))
 yhat = model.predict(X, batch_size=batch_size)
 return yhat[0,0]

# load dataset
series = read_csv('shampoo-sales.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)

# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)

# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, 1)
supervised_values = supervised.values

# split data into train and test-sets
train, test = supervised_values[0:-12], supervised_values[-12:]

# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)

# fit the model
lstm_model = fit_lstm(train_scaled, 1, 3000, 4)
# forecast the entire training dataset to build up state for forecasting
train_reshaped = train_scaled[:, 0].reshape(len(train_scaled), 1, 1)
lstm_model.predict(train_reshaped, batch_size=1)

# walk-forward validation on the test data
predictions = list()
for i in range(len(test_scaled)):
 # make one-step forecast
 X, y = test_scaled[i, 0:-1], test_scaled[i, -1]
 yhat = forecast_lstm(lstm_model, 1, X)
 # invert scaling
 yhat = invert_scale(scaler, X, yhat)
 # invert differencing
 yhat = inverse_difference(raw_values, yhat, len(test_scaled)+1-i)
 # store forecast
 predictions.append(yhat)
 expected = raw_values[len(train) + i + 1]
 print('Month=%d, Predicted=%f, Expected=%f' % (i+1, yhat, expected))

# report performance
rmse = sqrt(mean_squared_error(raw_values[-12:], predictions))
print('Test RMSE: %.3f' % rmse)
# line plot of observed vs predicted
pyplot.plot(raw_values[-12:])
pyplot.plot(predictions)
pyplot.show()

+ Recent posts